Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(39): E4086-95, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25228773

RESUMO

Previously, we have shown that Onecut1 (Oc1) and Onecut2 (Oc2) are expressed in retinal progenitor cells, developing retinal ganglion cells (RGCs), and horizontal cells (HCs). However, in Oc1-null mice, we only observed an 80% reduction in HCs, but no defects in other cell types. We postulated that the lack of defects in other cell types in Oc1-null retinas was a result of redundancy with Oc2. To test this theory, we have generated Oc2-null mice and now show that their retinas also only have defects in HCs, with a 50% reduction in their numbers. However, when both Oc1 and Oc2 are knocked out, the retinas exhibit more profound defects in the development of all early retinal cell types, including completely failed genesis of HCs, compromised generation of cones, reduced production (by 30%) of RGCs, and absence of starburst amacrine cells. Cone subtype diversification and RGC subtype composition also were affected in the double-null retina. Using RNA-Seq expression profiling, we have identified downstream genes of Oc1 and Oc2, which not only confirms the redundancy between the two factors and renders a molecular explanation for the defects in the double-null retinas, but also shows that the onecut factors suppress the production of the late cell type, rods, indicating that the two factors contribute to the competence of retinal progenitor cells for the early retinal cell fates. Our results provide insight into how onecut factors regulate the creation of cellular diversity in the retina and, by extension, in the central nervous system in general.


Assuntos
Fator 6 Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Retina/citologia , Retina/embriologia , Fatores de Transcrição/metabolismo , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fator 6 Nuclear de Hepatócito/deficiência , Fator 6 Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Gravidez , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Células Horizontais da Retina/citologia , Células Horizontais da Retina/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
2.
Lab Invest ; 94(5): 517-27, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24638272

RESUMO

Normal pancreatic epithelium progresses through various stages of pancreatic intraepithelial neoplasms (PanINs) in the development of pancreatic ductal adenocarcinoma (PDAC). Transcriptional regulation of this progression is poorly understood. In mouse, the hepatic nuclear factor 6 (Hnf6) transcription factor is expressed in ductal cells and at lower levels in acinar cells of the adult pancreas, but not in mature endocrine cells. Hnf6 is critical for terminal differentiation of the ductal epithelium during embryonic development and for pancreatic endocrine cell specification. We previously showed that, in mice, loss of Hnf6 from the pancreatic epithelium during organogenesis results in increased duct proliferation and altered duct architecture, increased periductal fibrosis and acinar-to-ductal metaplasia. Here we show that decreased expression of HNF6 is strongly correlated with increased severity of PanIN lesions in samples of human pancreata and is absent from >90% of PDAC. Mouse models in which cancer progression can be analyzed from the earliest stages that are seldom accessible in humans support a role for Hnf6 loss in progression from early- to late-stage PanIN and PDAC. In addition, gene expression analyses of human pancreatic cancer reveal decreased expression of HNF6 and its direct and indirect target genes compared with normal tissue and upregulation of genes that act in opposition to HNF6 and its targets. The negative correlation between HNF6 expression and pancreatic cancer progression suggests that HNF6 maintains pancreatic epithelial homeostasis in humans, and that its loss contributes to the progression from PanIN to ductal adenocarcinoma. Insight on the role of HNF6 in pancreatic cancer development could lead to its use as a biomarker for early detection and prognosis.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Fator 6 Nuclear de Hepatócito/deficiência , Fator 6 Nuclear de Hepatócito/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Progressão da Doença , Fator 6 Nuclear de Hepatócito/metabolismo , Homeostase/genética , Humanos , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
3.
Am J Pathol ; 184(5): 1479-88, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24631193

RESUMO

The potential for intrahepatic bile duct (IHBD) regeneration in patients with bile duct insufficiency diseases is poorly understood. Notch signaling and Hnf6 have each been shown to be important for the morphogenesis of IHBDs in mice. One congenital pediatric liver disease characterized by reduced numbers of IHBDs, Alagille syndrome, is associated with mutations in Notch signaling components. Therefore, we investigated whether liver cell plasticity could contribute to IHBD regeneration in mice with disruptions in Notch signaling and Hnf6. We studied a mouse model of bile duct insufficiency with liver epithelial cell-specific deficiencies in Hnf6 and Rbpj, a mediator of canonical Notch signaling. Albumin-Cre Hnf6(flox/flox)Rbpj(flox/flox) mice initially developed no peripheral bile ducts. The evolving postnatal liver phenotype was analyzed using IHBD resin casting, immunostaining, and serum chemistry. With age, Albumin-Cre Hnf6(flox/flox)Rbpj(flox/flox) mice mounted a ductular reaction extending through the hepatic tissue and then regenerated communicating peripheral IHBD branches. Rbpj and Hnf6 were determined to remain absent from biliary epithelial cells constituting the ductular reaction and the regenerated peripheral IHBDs. We report the expression of Sox9, a marker of biliary epithelial cells, in cells expressing hepatocyte markers. Tissue analysis indicates that reactive ductules did not arise directly from preexisting hilar IHBDs. We conclude that liver cell plasticity is competent for regeneration of IHBDs independent of Notch signaling via Rbpj and Hnf6.


Assuntos
Ductos Biliares Intra-Hepáticos/fisiologia , Fator 6 Nuclear de Hepatócito/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/metabolismo , Regeneração/fisiologia , Animais , Células Epiteliais/metabolismo , Fator 6 Nuclear de Hepatócito/deficiência , Hepatócitos/metabolismo , Imageamento Tridimensional , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/deficiência , Imuno-Histoquímica , Queratina-19/metabolismo , Camundongos Knockout , Lectinas de Plantas/metabolismo , Veia Porta/metabolismo , Fatores de Transcrição SOX9/metabolismo
4.
J Comp Neurol ; 520(5): 952-69, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21830221

RESUMO

Our current study focuses on the expression of two members of the onecut transcription factor family, Onecut1 (Oc1) and Onecut2 (Oc2), in the developing mouse retina. By immunofluorescence staining, we found that Oc1 and Oc2 had very similar expression patterns throughout retinal development. Both factors started to be expressed in the retina at around embryonic day (E) 11.5. At early stages (E11.5 and E12.5), they were expressed in both the neuroblast layer (NBL) and ganglion cell layer (GCL). As development progressed (from E14.5 to postnatal day [P] 0), expression diminished in the retinal progenitor cells and became more restricted to the GCL. By P5, Oc1 and Oc2 were expressed at very low levels in the GCL. By co-labeling with transcription factors known to be involved in retinal ganglion cell (RGC) development, we found that Oc1 and Oc2 had extensive overlap with Math5 in the NBL, and that they completely overlapped with Pou4f2 and Isl1 in the GCL, but only partially in the NBL. Co-labeling of Oc1 with cell cycle markers confirmed that Oc1 was expressed in both proliferating retinal progenitors and postmitotic retinal cells. In addition, we demonstrated that expression of Oc1 and Oc2 did not require Math5, Isl1, or Pou4f2. Thus, Oc1 and Oc2 may regulate the formation of RGCs in a pathway independent of Math5, Pou4f2, and Isl1. Furthermore, we showed that Oc1 and Oc2 were expressed in both developing and mature horizontal cells (HCs). Therefore the two factors may also function in the genesis and maintenance of HCs.


Assuntos
Fator 6 Nuclear de Hepatócito/fisiologia , Proteínas de Homeodomínio/fisiologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/fisiologia , Feminino , Fator 6 Nuclear de Hepatócito/deficiência , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Retina/embriologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Fatores de Transcrição/deficiência
5.
J Cell Sci ; 123(Pt 16): 2792-802, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20663919

RESUMO

The adult pancreas has considerable capacity to regenerate in response to injury. We hypothesized that after partial pancreatectomy (Px) in adult rats, pancreatic-duct cells serve as a source of regeneration by undergoing a reproducible dedifferentiation and redifferentiation. We support this hypothesis by the detection of an early loss of the ductal differentiation marker Hnf6 in the mature ducts, followed by the transient appearance of areas composed of proliferating ductules, called foci of regeneration, which subsequently form new pancreatic lobes. In young foci, ductules express markers of the embryonic pancreatic epithelium - Pdx1, Tcf2 and Sox9 - suggesting that these cells act as progenitors of the regenerating pancreas. The endocrine-lineage-specific transcription factor Neurogenin3, which is found in the developing embryonic pancreas, was transiently detected in the foci. Islets in foci initially resemble embryonic islets in their lack of MafA expression and lower percentage of beta-cells, but with increasing maturation have increasing numbers of MafA(+) insulin(+) cells. Taken together, we provide a mechanism by which adult pancreatic duct cells recapitulate aspects of embryonic pancreas differentiation in response to injury, and contribute to regeneration of the pancreas. This mechanism of regeneration relies mainly on the plasticity of the differentiated cells within the pancreas.


Assuntos
Células-Tronco Embrionárias/fisiologia , Ilhotas Pancreáticas/fisiologia , Pâncreas/fisiologia , Ductos Pancreáticos/fisiologia , Regeneração/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fator 6 Nuclear de Hepatócito/deficiência , Fator 6 Nuclear de Hepatócito/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Pancreatectomia , Ductos Pancreáticos/citologia , Ductos Pancreáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo
6.
Hepatology ; 47(2): 719-28, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18157837

RESUMO

UNLABELLED: Intrahepatic bile ducts maintain a close anatomical relationship with hepatic arteries. During liver ontogenesis, the development of the hepatic artery appears to be modulated by unknown signals originating from the bile duct. Given the capability of cholangiocytes to produce angiogenic growth factors and influence peribiliary vascularization, we studied the immunohistochemical expression of vascular endothelial growth factor (VEGF), angiopoietin-1, angiopoietin-2, and their cognate receptors (VEGFR-1, VEGFR-2, Tie-2) in fetal human livers at different gestational ages and in mice characterized by defective biliary morphogenesis (Hnf6(-/-)). The results showed that throughout the different developmental stages, VEGF was expressed by developing bile ducts and angiopoietin-1 by hepatoblasts, whereas their cognate receptors were variably expressed by vascular cells according to the different maturational stages. Precursors of endothelial and mural cells expressed VEGFR-2 and Tie-2, respectively. In immature hepatic arteries, endothelial cells expressed VEGFR-1, whereas mural cells expressed both Tie-2 and Angiopoietin-2. In mature hepatic arteries, endothelial cells expressed Tie-2 along with VEGFR-1. In early postnatal Hnf6(-/-) mice, VEGF-expressing ductal plates failed to incorporate into the portal mesenchyma, resulting in severely altered arterial vasculogenesis. CONCLUSION: The reciprocal expression of angiogenic growth factors and receptors during development supports their involvement in the cross talk between liver epithelial cells and the portal vasculature. Cholangiocytes generate a VEGF gradient that is crucial during the migratory stage, when it determines arterial vasculogenesis in their vicinity, whereas angiopoietin-1 signaling from hepatoblasts contributes to the remodeling of the hepatic artery necessary to meet the demands of the developing epithelium.


Assuntos
Células Epiteliais/fisiologia , Substâncias de Crescimento/fisiologia , Artéria Hepática/citologia , Artéria Hepática/fisiologia , Fígado/citologia , Fígado/embriologia , Neovascularização Fisiológica , Animais , Ductos Biliares/embriologia , Idade Gestacional , Fator 6 Nuclear de Hepatócito/deficiência , Humanos , Camundongos , Camundongos Knockout , Sistema Porta/embriologia , Sistema Porta/patologia , Sistema Porta/fisiologia
7.
Mol Cell Biol ; 26(16): 6037-46, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880515

RESUMO

During liver development, hepatocytes undergo a maturation process that leads to the fully differentiated state. This relies at least in part on the coordinated action of liver-enriched transcription factors (LETFs), but little is known about the dynamics of this coordination. In this context we investigate here the role of the LETF hepatocyte nuclear factor 6 (HNF-6; also called Onecut-1) during hepatocyte differentiation. We show that HNF-6 knockout mouse fetuses have delayed expression of glucose-6-phosphatase (g6pc), which catalyzes the final step of gluconeogenesis and is a late marker of hepatocyte maturation. Using a combination of in vivo and in vitro gain- and loss-of-function approaches, we demonstrate that HNF-6 stimulates endogenous g6pc gene expression directly via a synergistic and interdependent action with HNF-4 and that it involves coordinate recruitment of the coactivator PGC-1alpha. The expression of HNF-6, HNF-4, and PGC-1alpha rises steadily during liver development and precedes that of g6pc. We provide evidence that threshold levels of HNF-6 are required to allow synergism between HNF-6, HNF-4, and PGC-1alpha to induce time-specific expression of g6pc. Our observations on the regulation of g6pc by HNF-6 provide a model whereby synergism, interdependency, and threshold concentrations of LETFs and coactivators determine time-specific expression of genes during liver development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 6 Nuclear de Hepatócito/metabolismo , Fígado/embriologia , Fígado/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos/embriologia , Glucose-6-Fosfatase/genética , Fator 4 Nuclear de Hepatócito/genética , Fator 6 Nuclear de Hepatócito/deficiência , Fator 6 Nuclear de Hepatócito/genética , Hepatócitos/citologia , Hepatócitos/enzimologia , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Células NIH 3T3 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transativadores/genética , Fatores de Transcrição
8.
Gastroenterology ; 130(2): 532-41, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16472605

RESUMO

BACKGROUND & AIMS: A number of hereditary polycystic diseases are associated with formation of cysts within the pancreatic ducts. The cysts result from abnormal tubulogenesis, but how normal pancreatic duct development is controlled remains poorly understood. Here, we investigate the transcriptional mechanisms that control pancreatic duct development by addressing the role of the transcription factor hepatocyte nuclear factor (HNF)-6. METHODS: Using immunostaining, we have determined the expression pattern of HNF-6 in pancreatic ducts during mouse development. Hnf6 null mice at various stages of development were studied by immunolocalization methods to assess the morphology, differentiation, and proliferation status of ductal cells. The expression of genes involved in hereditary polycystic diseases was determined by real-time, reverse-transcription polymerase chain reaction (RT-PCR). RESULTS: We show that HNF-6 is expressed in the pancreatic duct epithelium throughout development and that, in the absence of HNF-6, duct morphogenesis is perturbed. Although development of the intercalated ducts is normal, cysts appear within the interlobular and intralobular ducts. This is associated with abnormal development of primary cilia at the apical pole of the duct cells and with reduced expression of a set of genes involved in polycystic diseases, namely those coding for HNF-1beta and for the cilium-associated proteins polyductin/fibrocystin and cystin. CONCLUSIONS: We identify HNF-6 as the first transcriptional regulator of pancreatic duct development and reveal the existence of different regulatory mechanisms in distinct duct compartments. HNF-6 controls a network of genes involved in cilium formation and in hereditary polycystic diseases. Finally, HNF-6 deficiency represents a genetically defined model of pancreatic cystic disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator 6 Nuclear de Hepatócito/genética , Ductos Pancreáticos/crescimento & desenvolvimento , Animais , Sequência de Bases , Primers do DNA , Desenvolvimento Embrionário , Fator 6 Nuclear de Hepatócito/deficiência , Camundongos , Camundongos Knockout , Morfogênese , Pancreatopatias/genética , Ductos Pancreáticos/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Development ; 132(23): 5295-306, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16284120

RESUMO

Arthrogryposis-renal dysfunction-cholestasis syndrome (ARC) is a rare cause of cholestasis in infants. Causative mutations in VPS33B, a gene that encodes a Class C vacuolar sorting protein, have recently been reported in individuals with ARC. We have identified a zebrafish vps33b-ortholog that is expressed in developing liver and intestine. Knockdown of vps33b causes bile duct paucity and impairs intestinal lipid absorption, thus phenocopying digestive defects characteristic of ARC. By contrast, neither motor axon nor kidney epithelial defects typically seen in ARC could be identified in vps33b-deficient larvae. Biliary defects in vps33b-deficient zebrafish larvae closely resemble the bile duct paucity associated with knockdown of the onecut transcription factor hnf6. Consistent with this, reduced vps33b expression was evident in hnf6-deficient larvae and in larvae with mutation of vhnf1, a downstream target of hnf6. Zebrafish vhnf1, but not hnf6, increases vps33b expression in zebrafish embryos and in mammalian liver cells. Electrophoretic mobility shift assays suggest that this regulation occurs through direct binding of vHnf1 to the vps33b promoter. These findings identify vps33b as a novel downstream target gene of the hnf6/vhnf1 pathway that regulates bile duct development in zebrafish. Furthermore, they show that tissue-specific roles for genes that regulate trafficking of intracellular proteins have been modified during vertebrate evolution.


Assuntos
Sistema Biliar/crescimento & desenvolvimento , Fator 6 Nuclear de Hepatócito/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Colestase/etiologia , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-beta Nuclear de Hepatócito/metabolismo , Fator 6 Nuclear de Hepatócito/deficiência , Fator 6 Nuclear de Hepatócito/metabolismo , Humanos , Larva/crescimento & desenvolvimento , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Mutação , Regiões Promotoras Genéticas , Transporte Proteico/genética , Proteínas de Transporte Vesicular , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...